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A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is
developed. This procedure is analogous to the deformation of an algebra of observables like deformation
quantization, but for an imaginary deformation parameter �the Planck constant�. This method is demonstrated
on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that
under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field
on a curved background passes into the stochastic model described by the Fokker-Planck equation with the
diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this
system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical
model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by apply-
ing the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the
Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic
deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in
the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent
medium.
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I. INTRODUCTION

Stochastic equations are usually considered as an effective
tool that is able to take into account infinitely many factors
acting on an open system. Generally, they are obtained by
adding to the classical equations of motion of the system a
random force �noise� with some probability distribution law.
In spite of this common view we shall develop here a slightly
different technique inspired by an algebraic approach to
quantum mechanics. As is known, quantum fluctuations or
quantum mechanics itself can be regarded as resulting from a
deformation of underlying classical mechanics or, more pre-
cisely, from an algebraic deformation of the Poisson struc-
ture on the phase space of the classical system. This ap-
proach, known as deformation quantization, was initiated in
the seminal papers �1�. Since the quantum fluctuations arise
from the deformation of the Poisson structure, it is reason-
able to pose the question of whether the stochastic fluctua-
tions could be reproduced in such a way. In this paper we
give an affirmative answer on this question and sustain it by
diverse examples.

A similarity between equations of quantum and stochastic
mechanics was perceived by many authors starting from
Schrödinger himself �2�. Much afterwards this similarity was
brought in an almost perfect accordance by Zambrini in his
works �3� on Euclidean quantum mechanics �4�. However,
the key point of these works as well as the works of other
authors �5–9� was an analytic continuation to imaginary time
and not the deformation of the Poisson structure. Further we
shall see that in the relativistic case this slight disagreement
is not a matter of interpretation but gives inequivalent re-
sults.

The principal point of this paper is that we can obtain
stochastic mechanics deforming the associative and commu-
tative product of the algebra of classical observables �the
smooth functions over the phase space� along the same lines
as in the deformation quantization procedure. However, con-
trary to an ordinary quantum mechanics with the real defor-
mation parameter �the Planck constant� we deform the prod-
uct by an imaginary deformation parameter. By analogy we
shall refer to this procedure as stochastic deformation �10�.
The deformation parameter, which we denote by �, charac-
terizes the “openness” of the system and a variance of ran-
dom forces is proportional to it. It should be mentioned that
the Hamiltonian generating the dynamics of stochastic sys-
tem may take forms unexpected at first glance, because the
classical limit �→0 of stochastic mechanics is not an ordi-
nary classical mechanics. In this limit we obtain some clas-
sical mechanics where the momenta should be regarded as
systematic forces �or proportional to them� acting on the sys-
tem, for this limit is equivalent to a treatment of the system
in the equilibrium state when stochastic fluctuations vanish
and the effect of systematic forces is balanced by a dissipa-
tion. The expansion of the pq symbol of the Hamiltonian in
momenta is closely related to the Kramers-Moyal expansion
and the coefficients of this expansion are connected with the
cumulants of the probability density function of a noise. In
the simplest case of a linear symplectic space the quadratic in
momenta Hamiltonian corresponds to a Gaussian noise.

To avoid misunderstanding we note in advance that the
result of stochastic deformation of a classical model, that we
call stochastic mechanics, is not Nelson’s stochastic mechan-
ics �11� developed to give a stochastic interpretation of quan-
tum mechanics. As a practical matter, our approach can be
regarded as a gauged version of the operator approach to
stochastic mechanics expounded in �6–9,12,13�. Such a for-
mulation offers the advantage that one can apply the devel-
oped methods of quantum mechanics and field theory to sto-*kpo@phys.tsu.ru
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chastic mechanics almost without any changing. In this
context it is sufficient to mention, for instance, the models
with gauge symmetries. The methods of quantization of sys-
tems with constraints �see for an introduction �14–16��
adapted to stochastic deformation give the technique of gen-
eration of stochastic models respecting not merely the global
symmetries of the initial classical system but the gauge sym-
metries as well. In other words, these methods allow us to
introduce the noise to physical degrees of freedom that are
not expressed in an explicit form. We shall consider several
models with gauge symmetries in this paper.

The paper is organized as follows. We start our investiga-
tion with a formulation of general rules of stochastic defor-
mation by the example of a linear symplectic space �Sec. II�.
In developing this scheme we follow the central proposal of
deformation quantization and try to devise the procedure in a
more algebraic way. We do not deal with the linear space of
states and its dual but with the algebra of operators on them
which are recognized as stochastic observables. A state of a
stochastic system is specified by an analog of the density
operator. For pure states it is useful to realize the algebra of
observables in some linear space, at that we construct this
space by the action of creation operators on the vacuum
state. This standpoint allows us to calculate averages and
make some proofs by means of the basic relation of the
Heisenberg-Weyl algebra only. Generally speaking, the real-
ization of some operators arising on intermediate steps of
calculations can lead to divergent integrals or series that can-
cel each other in the final result. Then the algebraic approach
can be considered as some regularization or prescription to
handle these singular integrals. Besides, in this algebraic way
we can establish stochastic mechanics for systems with non-
linear phase space such as symplectic or even nonregular
Poisson manifolds. Explicit constructions of the deformed
product �star product� of the algebra of smooth functions on
such manifolds are given in �17,18�.

In conclusion of Sec. II we relate the mechanics obtained
from stochastic deformation and ordinarily formulated sto-
chastic mechanics using a path-integral representation of the
transition probability and the Langevin equations associated
with it. There we present the formal relation only. The exis-
tence problems are left beyond the scope of the paper. The
very method of stochastic deformation implies that the par-
tial differential equations of the Fokker-Planck type are pri-
mary for this framework, while the stochastic equations of
the Langevin type are only used to give a more lucid physi-
cal interpretation to the obtained equations. At the same time
the form of the Hamiltonian generating an evolution is re-
lated to the probability density function of the noise. Thereby
the information about the probability distribution law for the
noise enters to the stochastic deformation procedure.

In Sec. III we consider several significant models reveal-
ing the key features of the developed formalism. All of them
are divided into three categories. The first class exposed in
Sec. III A is constituted by the models of a nonrelativistic
particle under the influence of a random force. It is a classi-
cal subject of stochastic mechanics and we consider these
models to include them into a general scheme and gain an
experience required in understanding of subsequent sections.
Namely, in this section we study the stochastic deformation

of the models of a nonrelativistic particle coupled to the
electromagnetic and gravitational fields as well as the sto-
chastic deformation of the model leading to the Klein-
Kramers equation. Under stochastic deformation the first two
models result in the stochastic systems described by the
Fokker-Planck equations with trivial and nontrivial diffusion
tensors, respectively, the diffusion tensor being the inverse
metric �19�.

In Sec. III B we extend our analysis to relativistic models
with constraints. We investigate three stochastic models of a
relativistic particle affected by a random force. The first
model is the stochastically deformed model of a relativistic
particle interacting with the electromagnetic field. We show
that such a model is described by a relativistic equation
which generalizes the Fokker-Planck equation in the same
sense as the Klein-Gordon equation generalizes the
Schrödinger equation. For a constant systematic force acting
on the particle the obtained equation is in one-to-one corre-
spondence with the relativistic diffusion equation �20�. Mak-
ing use of the descent method �21,22� we derive a path-
integral representation of the transition probability, where it
turns out that such a relativistic Fokker-Planck equation cor-
responds to a relativistic particle under the influence of a
non-Gaussian noise. The second model examined in this sec-
tion is a relativistic generalization of the model leading under
stochastic deformation to the Klein-Kramers equation. The
respective relativistic equation proves to describe a relativis-
tic diffusion studied in �23–28�. Here we also obtain a path-
integral representation of the transition probability both in
the gauge of a laboratory time and in the proper time gauge.
The third model of this section is related to stochastic me-
chanics of a relativistic charged particle with the radiation
reaction taken into account, i.e., we derive in this section a
relativistic analog of the Fokker-Planck equation associated
with the stochastic Lorentz-Dirac equation. It looks very
likely that the procedure developed in these sections is
straightforwardly generalized to stochastic reparametrization
invariant relativistic ordinary differential equations of an ar-
bitrary order.

Section III C is devoted to stochastic deformation of rela-
tivistic field theories. We only touch the problem and con-
sider free models of the scalar and electromagnetic fields.
Under the assumptions of causality and relativistic invari-
ance we derive the propagators for these models. In the case
of the electromagnetic field the obtained propagator coin-
cides with the well-known correlator of the electromagnetic
fields in a transparent medium �29�. Besides the last model
illustrates how the Becchi-Rouet-Stora-Tyutin �BRST� quan-
tization technique can be applied to stochastic mechanics.

Thus we see that the stochastic deformation method cov-
ers a considerable part of stochastic physics and apparently
any other stochastic model can be formulated in terms of this
unifying algebraic approach. The first model in Sec. III B
shows that the non-Markovian processes can be obtained by
stochastic deformation as well. The non-Markovian pro-
cesses have to be described by the models with constraints.
Inasmuch as we regard in this paper many topics of theoret-
ical physics the reference list is, of course, incomplete. I tried
to make references to the basic works known to me and to
the works that might be useful to the reader in understanding
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and further developing the scheme evolved here.
We use the following notation and conventions. The sys-

tem of units is chosen so that the velocity of light c=1.
Greek letters denote space-time indices and Latin indices in-
dicate the spatial components of tensors. Sometimes we shall
use boldface characters to denote the spatial part of coordi-
nates. Einstein’s summation rule is assumed unless otherwise
stated. Usually overdots will denote a differentiation with
respect to time. In the sections regarding nonrelativistic mod-
els d is a dimension of the configuration space with the co-
ordinates x and indices are risen and lowered by the metric
tensor ���=diag�−1,1 , . . . ,1�, while for the relativistic mod-
els d is a dimension of the space-time, x is the space-time
coordinates, and the metric tensor ��� reads as diag�1,
−1, . . . ,−1�.

II. THE RULES OF STOCHASTIC DEFORMATION

In this section we formulate the rules of stochastic defor-
mation and establish the relation between a stochastically
deformed model and a certain stochastic mechanics �30�.
Consider a classical system on the linear symplectic mani-
fold M with canonical coordinates xi and pj:

�xi,pj� = � j
i, i, j = 1,d , �1�

where d is a dimension of the configuration space and curly
brackets denote the Poisson brackets. The algebra of classi-
cal observables is the real commutative associative algebra
of smooth functions on M. The evolution is generated by the
observable H�t ,q , p� that is the Hamilton function.

Then we deform the algebra of classical observables in
the manner of deformation quantization but with an imagi-
nary deformation parameter �the Planck constant� such that

�x̂i, p̂j� = �� j
i, � � 0. �2�

Hereinafter we denote elements of the deformed algebra by
hats and imply the Weyl-Moyal star-product �31�

f̂ ĝ = �
n=0

�
1

n!
��

2
	n

	a1b1
¯ 	anbn�a1¯an

f�z��b1¯bn
g�z� , �3�

where z
�x , p�, an ,bn=1,2d, the functions f�z� and g�z� are
the Weyl symbols of the corresponding elements of the de-
formed algebra, 	ab is the inverse to the symplectic two-
form 	ab. Recall that the Weyl-ordered operator for a mono-
mial in momenta symbol looks like

Vi1¯in�x�pi1
¯ pin

→
1

2n�
k=0

n

Cn
kp̂i1

¯ p̂ik
Vi1¯in�x̂�p̂ik+1

¯ p̂in
,

�4�

where Cn
k are the binomial coefficients. The physical mean-

ing of the constant � in formula �2� will be elucidated below.
Roughly, � characterizes a variance of stochastic forces act-
ing on a classical system.

Let us give a linear functional Tr on the deformed algebra
mapping to real numbers and vanishing on commutators, viz.

Tr� f̂ ĝ� = Tr�ĝ f̂�, ∀ f̂ , ĝ , �5�

which we shall call the trace. An explicit formula for the

trace of the element f̂ has the form

Tr f̂ =� ddxddp

�2
��d f�x,ip� ⇒ Tr� f̂ ĝ�

=� ddxddp

�2
��d f�x,ip�g�x,ip� . �6�

Then we define a complete set of elements ��̂�� of the de-
formed algebra by the properties

1. �
�

�̂� = 1̂,

2. Tr �̂� = 1,

3. �̂��̂�� = �����̂�. �7�

Consider a class of the complete sets related to each other
by similarity transformations, i.e., two complete sets ��̂�� and
�̂�� are in the same class if there exists an invertible ele-

ment Û in the algebra spanned on the generators x̂i and p̂j
such that

̂ f��� = Û−1�̂�Û , �8�

where f is a bijection and Û does not depend on �. We
choose the class which contains the complete set ��̂x� corre-
sponding to the x representation

�̂x = �d�x̂i − xi� =� ddp

�2
��dexp� i

�
pi�x̂i − xi� . �9�

This class also contains the complete sets associated with
any Lagrangian section of the symplectic space M obtained
from the coordinate Lagrangian section by a linear symplec-

tic transformation. The element Û realizing a similarity
transformation is a solution of the equation

�Û
˙ �t� =

1

2
ẑa	abAc

bẑcÛ�t�, Û�0� = 1̂, �10�

for appropriate t, where the matrix Ab
a belongs to the Lie

algebra of the symplectic group.

We say that the element T̂ of the deformed algebra is a
stochastic observable if there exists a complete set �t̂�� from
the chosen class such that

T̂ = �
�

T���t̂�, �11�

where T��� is a certain real-valued function. In other words
the stochastic observables should be diagonalizable in the
chosen class.

The state of the stochastic system is characterized by the
observable �̂ with a unit trace:
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Tr �̂ = 1. �12�

The pure state is specified by an additional idempotency re-
quirement

�̂2 = �̂ . �13�

The average of an observable T̂ over a state �̂ is defined as

�T̂�: = Tr��̂T̂� . �14�

In particular, the average over the state �̂ of a certain pure
state �̂� gives the probability to find a stochastic system in
this pure state.

The dynamics of a stochastic system in the state �̂ are

generated by the Weyl-ordered operator Ĥ corresponding to
the Hamilton function H�t ,x , p� and described by the von
Neumann equation

��̇̂ = �Ĥ, �̂� , �15�

whence the “Euclidean” Heisenberg equation for averages
follows

�
d

dt
�T̂� = ���tT̂ + �T̂,Ĥ�� . �16�

The evolution defined in this way maps observables into ob-
servables. Besides, it follows from Eq. �15� that the evolu-
tion of a probability density function to find a system in the
pure state �̂� obeys the equation

�
d

dt
��̂���̂ = Tr��̂��Ĥ, �̂�� , �17�

which is nothing but the Fokker-Planck equation. The con-
servation of the total probability is a consequence of the
trace property.

Now we are in position to touch the problem of an arbi-
trariness in a definition of the star-product related to the or-
dering prescription. This arbitrariness at least for a linear
symplectic space does not affect averages and their evolu-
tion, but as in quantum mechanics when we convert one
star-product to another some observables become nondiago-
nalizable in a class of complete sets corresponding to the
new star product. Anyway, different orderings for the same
physical observable or the Hamiltonian just result in different
definitions of the quantities measured in stochastic mechan-
ics �correlators� in terms of the coefficients of an expansion
of the observable and the Hamiltonian in momenta.

Since the phase space of the given classical system is a
linear symplectic space it is useful to realize the deformed
algebra by operators acting in some linear subspace V of the
linear space of smooth functions on the configuration space.
We introduce the Dirac notations for elements from the lin-
ear space V and its dual:

��� � V, ��� � V�, �18�

where V� is the linear space of linear functionals on V. Op-
erators acting in the space V are naturally translated to op-
erators acting in the dual space V�. The eigenvectors from

the space V and V� of the operator T̂ corresponding to the
eigenvalue t we denote by

�T = t�, or �t�, and �T = t�, or �t� ,

T̂�t� = t�t�, �t�T̂ = �t�t . �19�

For the given left and right vectors �vacua� �x=0� and �x
=0� we construct the eigenvectors of the operator x̂

�x = a� = e1/�aip̂i�x = 0�, �x = a� = �x = 0�e−1/�aip̂i. �20�

Their inner product possesses the properties

f�x��x�x�� = f�x���x�x��, ∀ f � V ,

�x + ��x� + �� = �x�x��, ∀ � , �21�

and, consequently, is equal up to a constant factor to the �
function. On setting this constant to unity the element of the
complete set �9� can be written as

�̂x = �x��x� . �22�

In the same manner we can prove that an element of a com-
plete set associated with any other Lagrangian section has
the form �22� with appropriate eigenvectors. The linear space
V is spanned on the vectors obtained from �x� by an action of

the various operators Û realizing the similarity transforma-
tion in the chosen class of complete sets.

Thus for the pure state

�̂ = ������, ����� = 1, �23�

the probability to find a system in the point x at the time t
takes the form

��t,x� = �x������x� . �24�

Now it is easy to obtain a formal solution to the Fokker-
Planck equation �17�. Its fundamental solution or, in physical
terms, the transition probability, can be represented in two
ways �32�:

G�t�,x�;t,x�: =
�x��Ût�,t�x����Ût�,t

−1 �x��

���x�

=
�x��Ût�,t����x�Ût�,t

−1 �x��

�x���
, �25�

where Ût�,t is the evolution operator obeying the equations

��t�Ût�,t = Ĥ�t��Ût�,t, Ût,t = 1̂. �26�

A convolution of Eq. �25� with Eq. �24� gives the probability
density function at the moment t�. To provide linearity of
Eqs. �17� with respect to ��t ,x� we have to claim that one of
the kernels �25� is independent of ��t ,x�. Therefore either
�� �x� or �x ��� is independent of ��t ,x�.

Consequently, the density operator �23� in the x represen-
tation looks like

�x������y� = e1/��S�t,y�−S�t,x����t,x� ,
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�x������y� = e1/��S̃�t,y�−S̃�t,x����t,y� , �27�

for the first and second cases, respectively. Here we intro-
duce S�t ,x� which is the analog of a quantum mechanical
phase �3,33�. This function can have discontinuities or even
be complex but its gradient contributing to the observable
averages should be real and have removable discontinuities
only. The first representation in Eq. �25� for the fundamental
solution is a forward evolution operator twisted by e1/�S�t,x�

and it takes the form of a forward transition probability,
while the second representation of the fundamental solution
has the form of a backward transition probability for the
Fokker-Planck equation.

These transition probabilities depend on the phase having
different definitions for the first and second cases �27�. For
the given initial probability density function one can choose
the initial phase in such a way that the forward transition
probability will give the same probabilities as the process
generated by the backward transition probability with the
same initial probability density function. The phase is a new
“degree of freedom” as against classical mechanics and the
above mentioned flexibility of the formalism is only con-
cerned with its interpretation in terms of stochastic mechani-
cal quantities. For the forward transition probability with the
definition of phase given by the first formula in Eq. �27� this
interpretation takes the simplest form and will be discussed
below. Henceforth we shall refer to the forward transition
probability as the transition probability.

A. Stochastic deformation and Langevin equation

By standard means �see, e.g., �31,34�� we can construct a
path-integral representation of the transition probability �25�.
Notice in advance that we shall not consider here the exis-
tence problems of fundamental solutions and their well-
defined path-integral representations. The interested reader
can consult the references above.

Using the relation between the kernel of the Weyl-ordered

operator T̂ in the coordinate representation and its symbol

�x��T̂�x� =� ddp

�2
��dT� x� + x

2
,ip	e−i/�pi�x�

i−xi�, �28�

we formally have

���t + dt��x���x��Ût+dt,t�x�
1

���t��x�

= �x��exp�dt

�
�Ĥ�t, x̂, p̂ + �S�t, x̂�� + �tS�t, x̂��	�x�

=� ddp�t�
�2
��dexp�−

i

�
�pi�t�ẋi�t�

+ i�H̄W„t, x̃�t�,ip�t�… + �tS„t, x̃�t�…��dt	 , �29�

where H̄W�t ,x , p� is a Weyl-symbol of the Hamiltonian Ĥ in

which the momenta operators p̂j are replaced by p̂j +� jŜ and

x�t� = x, x�t + dt� = x�, ẋ�t�: = �x�t + dt� − x�t��/dt ,

x̃�t�: = �x�t + dt� + x�t��/2.

As long as the transition probability �25� possesses the de-
fining property of the Markov process we can cut the time
interval �t , t�� into pieces for which formula �29� makes
sense and then integrate over intermediate positions. As a
result the fundamental solution to the Fokker-Planck equa-
tion �17� takes the form

G�t�,x�;t,x� =� �
���t,t��

ddx��� �
���t,t��

ddp���
�2
��d

�exp�−
i

�
�

t

t�−d�

d��pi���ẋi���

+ i�H̄W„�, x̃���,ip���… + ��S„�, x̃���…��	 .

�30�

Notice that the main contribution to the transition probability
�30� is made by paths approximating a classical trajectory.
This becomes manifest if one makes the change of variables
pj→pj −� jS and neglects stochastic corrections.

On integrating Eq. �30� over momenta we arrive at the
functional integral with the expression in the exponent taking
the form of the Stratonovich-type stochastic integral �see,
e.g., �8��. It is a consequence of the use of Weyl symbol for
the evolution operator. If we had chosen the pq symbol, we
would have obtained the Ito-type stochastic integral. Namely,
in that case the transition probability �30� becomes

G�t�,x�;t,x� =� �
���t,t��

ddx��� �
���t,t��

ddp���
�2
��d

�exp�−
i

�
�

t

t�−d�

d��pi���ẋi���

+ i�H̄„�,x���,ip���… + ��S„�,x���…��	 ,

�31�

where H̄�t ,x , p� is a pq symbol of the Hamiltonian operator

with the momenta p̂j +� jŜ. Certainly, the transition probabili-
ties �30� and �31� are equal to each other as they are different
symbols of the same evolution operator.

Let us now provide an interpretation of the above stochas-
tic mechanics in terms of the Langevin equation

ẋi��� − �i��� = 0. �32�

To this end we insert the � function with the left-hand side
�LHS� of Eq. �32� in its argument into the path integral �31�
and integrate it over �i���. Then
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F��,�,x�: =� ddp

�2
��de−i/�d�pi�
i

�exp�d�

�
�H̄��,x,ip� + ��S��,x��	 �33�

can be interpreted as a probability density function of the
noise �i��� at the time slice �, the Langevin Eq. �32� being
understood in the Ito sense. The function

���,�,x�: =� dd�ei�i�
i
F��,�,x�

= �d��−d exp�d�

�
�H̄��,x,i�

�

d�
	 + ��S��,x��

�34�

is known as the characteristic function and the coefficients of
the Taylor series in i� of the expression in the exponent are
called the cumulants. For example, the second cumulant is
proportional to the inverse metric �inverse mass matrix� in

the Hamiltonian H̄�t ,x , p� multiplied by the deformation pa-
rameter �. The second cumulant is equal to the mean-
squared deviation which is why we claimed that � character-
izes the variance of stochastic forces acting on the system.

Now it is easy to see that the Hamiltonian most quadratic
in momenta leads to the Langevin equation with a noise
whose probability density function is a product of delta and
Gaussian functions. The Hamiltonians depending on higher
powers of momenta correspond to a non-Gaussian noise. If
the Hamiltonian is analytic in momenta then in the classical
limit, �→0, only the first cumulant survives and the transi-
tion probability �31� becomes Liouvillian. The zeroth cumu-
lant is a mere normalization factor and, as follows from the
normalization condition on Eq. �31�, is equal to −d ln d�.

The above interpretation in terms of the Langevin equa-
tion works well when the probability density �33� of noise is
a positive and normalizable function. If this function takes
negative values then the transition probability �31� also pos-
sesses negative values for some values of its arguments.
However, it does not automatically imply that the considered
stochastic mechanics is unphysical. For example, this fact
may signify that the �-localized probability density functions
are not well defined for such a system from the physical
point of view. At the same time there may exist a class of
probability density functions for which a convolution with
the transition probability gives reasonable results. We shall
encounter the problem of negative probabilities in consider-
ing a relativistic generalization of the Fokker-Planck equa-
tion in Sec. III B 1.

III. EXAMPLES

A. Nonrelativistic particle

In this subsection we consider the stochastic deformation
of three nonrelativistic models: a particle interacting with the
electromagnetic field, the same model on a curved back-
ground, and the model leading to the Klein-Kramers equa-
tion. For these models we obtain a path-integral representa-

tion of the transition probabilities and the associated
Langevin equations. Some simple applications of the devel-
oped scheme are also demonstrated.

1. Fokker-Planck equation

According to general rules expounded in the previous sec-
tion the Weyl-ordered Hamiltonian for a nonrelativistic par-
ticle looks like

Ĥ =
�p̂i − Âi�2

2m
+ Â0. �35�

It is convenient to realize the operators x̂i and p̂j in the linear
space V of functions on the configuration space in the fol-
lowing way:

x̂i = xi, p̂i = − ��i. �36�

Then for the pure state of the form �23� the von Neumann
equation �15� reduces to the two “Euclidean” Schrödinger
equations

��t��t,x� = � �p̂i − Ai�2

2m
− A0��t,x� ,

��t��t,x� = − � �p̂i + Ai�2

2m
− A0��t,x� , �37�

provided that the standard inner product is understood. For a
correct stochastic interpretation the functions ��t ,x� and
��t ,x� have to be both positive �or both negative�. The fields
A� are the gauge fields, which we shall call the electromag-
netic fields. Their physical meaning is obvious from the gen-
eral considerations of the previous section. Namely, intro-
ducing the phase, S : =� ln �, we see from Eq. �34� that the
quantity

�iS − Ai �38�

is proportional to the first cumulant of the probability density
function of noise �33� whereas the first cumulant is equal to
the expectation value of a random variable. We dwell on the
interpretation of A� a bit later.

The Schrödinger equations �37� are invariant under the
following gauge transformations:

��t,x� → ��t,x�e−��t,x�, ��t,x� → ��t,x�e��t,x�,

A��t,x� → A��t,x� + ����t,x� . �39�

In particular, these transformations do not change the prob-
ability density function. The conserved four-current corre-
sponding to the gauge transformations �39� is given by

j� = ���,
1

2m
���p̂i − Ai�� − ��p̂i + Ai���	 . �40�

The system of equations �37� is Lagrangian with the Hamil-
tonian action of the form
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SH��,�� =� dt�����t − Ĥ��� , �41�

that is, the fields ��t ,x� and ��t ,x� are canonically conjugate
with respect to the Poisson bracket.

On substituting the definition of phase �27�, the system of
evolutionary equations �37� can be rewritten in the equiva-
lent form

�t� = − �i�−
�

2m
�i� +

�iS − Ai

m
� ,

�tS − A0 +
��iS − Ai�2

2m
= −

�

2m
�i��iS − Ai� . �42�

The first equation is the Fokker-Planck equation, which is the
divergence of the four-current �40�, while the second equa-
tion can be referred to as the quantum Hamilton-Jacobi equa-
tion �33,35�. Now it is evident that if one neglects stochastic
corrections then the initially �-shaped probability density
function ��t ,x� keeps its own form and propagates as a clas-
sical charged particle in the electromagnetic field �36� with
particle’s momentum �iS�t ,x�−Ai�t ,x�.

Taking into account the stochastic corrections we see that
the more the probability density function is localized, the
higher is the probability flow resisting localization. It can be
perceived, for example, from the stochastic analog of the
quantum mechanical uncertainty relation

��xi�2���pos
i �2� �

�2

4
, �43�

where summation is not understood, pos
i : =−��i ln �1/2 is the

osmotic momentum. This relation is easily deduced from the
inequality

� ddx���xi − ��i��1/2�2 � 0, ∀ � � R , �44�

under the assumption that ��x� tends to zero at spatial infinity
faster than x−2.

To find the first stochastic correction to the classical equa-
tions of motion we use the Heisenberg equations �16� for
averages of the operators x̂i and p̂j,

m
d

dt
�xi� = �p̂i − Ai� = ��iS − Ai� ,

d

dt
�p̂i� = − ��iA

0� +
1

2m
��iAj�p̂j − Aj� + �p̂j − Aj��iAj� ,

�45�

whence

m
d2

dt2 �xi� = �Ei� +
1

m
�ijk��� jS − Aj�Hk� +

�

2m
�ijk�� jHk� .

�46�

In the case where ��t ,x� is sufficiently localized compared to
the characteristic scale of variations of the electromagnetic
fields the angle brackets can be carried through the electro-

magnetic fields to obtain a closed system of evolutionary
equations on the average position. They are the Newton
equations with the stochastic correction.

Now we return to the interpretation of the gauge fields A�.
Recall that the expectation value of noise in the Langevin
equation �32� is called a systematic drift. In our case the
systematic drift is equal to

f i�t,x�: = �iS�t,x� − Ai�t,x� , �47�

where we set m=1. Therefore to satisfy the second equation
in Eq. �42� we have to take

A0 − �tS =
1

2
�f2 + ��i f

i� . �48�

The system of equations �47� and �48� with respect to
A��t ,x� and S�t ,x� obviously admits a solution for any sys-
tematic drift f i�t ,x�. The fields A��t ,x� and S�t ,x� are not
uniquely defined by these equations and the arbitrariness in
their definition is equivalent to the arbitrariness of a gauge.
In particular, in the “unitary” gauge S�t ,x�=0 the gauge
fields Ai are the components of the systematic drift with an
opposite sign.

The Newton equations �46� for the average position of the
particle in the representation �47� and �48� become

d

dt
�xi� = �f i�,

d2

dt2 �xi� = ���t + f j� j�f i� +
�

2
��f i� . �49�

For example, if f i�t ,x� is the velocity field of an incompress-
ible viscous fluid with the specific pressure p and kinematic
viscosity � �see, e.g., �37�� then the second equation in Eq.
�49� is replaced by

d2

dt2 �xi� = − ��ip� + �� + �/2���f i� , �50�

i.e., the acceleration of mean position of the Brownian par-
ticle is the same as for the particle which is not influenced by
stochastic forces but entrained by a fluid with a higher vis-
cosity.

To gain a better physical insight into the stochastically
deformed model of a nonrelativistic particle we construct the
functional integral representation �30� of the transition prob-
ability. The Weyl symbol of the Hamiltonian with the mo-
menta p̂j +� jS arising in formula �31� is

H̄�t,x,ip� =
1

2m
�− p2 + 2ipi��iS − Ai� + ��iS − Ai�2� + A0.

�51�

Substituting this expression into Eq. �30� and integrating
over momenta we arrive at

G�t�,x�;t,x� =� � m

2
�d�	d/2

�
���t,t��

� m

2
�d�	d/2

ddx���

�exp�−
1

�
�

t

t�−d�

d��m

2
ẋ2 + �Ai − �iS�ẋi

− �A0 + ��S�	 , �52�
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where the functions A��t ,x� and S�t ,x� obey the quantum
Hamilton-Jacobi equation �42� and are taken at the point
�t ,x�= (� , x̃���). Since the expression in the exponent is the
classical action modulo boundary terms the main contribu-
tion to the transition probability is made by the paths ap-
proximating a classical trajectory that is in agreement with
our general considerations. In the representation �47� and
�48� the transition probability �52� reduces to the well-known
result

G�t�,x�;t,x� =� 1

�2
�d��d/2 �
���t,t��

ddx���
�2
�d��d/2

�exp�−
1

2�
�

t

t�−d�

d���ẋ��� − f„�, x̃���…�2

+ ��i f
i
„�, x̃���…�	 . �53�

So we have obtained the transition probability by the use of
the Weyl symbol of the evolution operator. The transition
probability in terms of the pq symbol �31� of the evolution
operator is constructed along the same lines and looks like
Eq. �53� without the stochastic correction to the action and
the midpoint prescription.

In conclusion of this section we briefly discuss how dif-
ferent generalizations of the Fokker-Planck equation of the
form �42� can be constructed in the developed framework.

2. Fokker-Planck equation with nontrivial
diffusion tensor

At first we consider stochastic deformation of the model
�35� on a curved space background with the inverse metric
gij. From the general considerations we know that the inverse
metric is proportional to the covariance �the second cumu-
lant� of noise in the Langevin equation �32�, while the gauge
fields Ai are related to expectation values of the noise. Be-
sides, to provide a convergence of the integral �33� over
momenta we have to require that the eigenvalues of the ma-
trix gij are nonnegative.

In constructing the Hamiltonian by its symbol we follow
the simplest prescription �38� based on the use of the expo-
nential map from the tangent bundle to the configuration
space generated by the Levi-Civita connection �for more so-
phisticated methods, see, e.g., �39,40��. In other words, we
recognize the momenta p̂i as the derivatives at the origin of
the Riemann normal coordinates and the vectors of the linear
space V as the scalar functions on the manifold. Neglecting
for a while the gauge fields A� we have for the Hamiltonian
�35� in the normal coordinates

Ĥ0 =
1

8m
�p̂ip̂jg

ij + 2p̂ig
ijp̂j + gijp̂ip̂j� . �54�

Making use of relations between the derivatives of the metric
taken at the origin of the normal coordinates and the Rie-
mannian tensor �41,42� we arrive at �43�

Ĥ0 =
�2

2m
��2 −

R

12
	 , �55�

where R is the scalar curvature and �i is the Levi-Civita
connection. Notice that the covariant pq ordering leads to the
coefficient 1/3 at the curvature as in �42�, the covariant qp
ordering gives rise to the vanishing coefficient �minimal cou-
pling� and

Ĥ0 =
1

4m
�p̂ip̂jg

ij + gijp̂ip̂j�

corresponds to Eq. �55� with the coefficient 1/6 at the curva-
ture �conformal coupling� �44�. All of these prescriptions re-
sult effectively in a variation of the coefficient at the scalar
curvature.

Thus the Hamiltonian for a particle interacting with the
gauge fields A� on a curved space background looks like

Ĥ =
1

2m
���i + Ai�2 −

�2R

24m
+ A0. �56�

Substituting the phase definition Eq. �27� into the
Schrödinger equations following from the action �41� we ob-
tain �19�

g−1/2�t�g1/2�� = − �i�−
�

2m
�i� +

�iS − Ai

m
� ,

�tS − A0 +
��iS − Ai�2

2m
= − ��t ln g1/2 −

�

2m
�i��iS − Ai� +

�2R

24m
,

�57�

where � and S are assumed to be the scalar functions and
g : =det gij. Since the Fokker-Planck equation is independent
of the scalar curvature term the averages of observables de-
pending on x only and their evolution do not depend on the
concrete covariant ordering scheme.

Rewriting Eqs. �57� in terms of the density g1/2� one can
see that the inverse metric is proportional to the diffusion
matrix. Besides, from the Heisenberg equations we find a
systematic drift,

m
d

dt
�xi� = �gij�� jS − Aj� +

�

2
g−1/2� j�g1/2gij�� . �58�

Despite that the second term looks noncovariant it behaves
under general coordinate transformations like the first term
under the assumption that � tends to zero at spatial infinity.
The transition probability �31� takes the form �cf. �19,45��

G�t�,x�;t,x� =� �
���t,t��

ddx��� �
���t,t��

ddp���
�2
��d

�exp�−
i

�
�

t

t�−d�

d��piẋ
i +

i

m�−
gijpipj

2

+ ipi�gij�� jS − Aj� +
�

2
g−1/2� j�g1/2gij���	 .

�59�
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It is covariant under general coordinate transformations. To
prove this by making a change of variables one should take
care about the so-called extraterms �see, e.g., �46�� which
cancel derivatives of the Jacobian matrices resulting from the
noncovariant expression in the exponent.

3. Klein-Kramers equation

Now we turn to another generalization of the Fokker-
Planck equation �42�, namely, to the Klein-Kramers equa-
tion. This equation arises in studying systems of second or-
der stochastic differential equations. Therefore, first,
introducing additional variables we reduce such a system to
the system of the first order equations of the form �32� and
then apply the developed formalism.

Let us consider a system of stochastic equations

ẋi = �i, �̇i = f i�t,x,�� + �i, �60�

where �i is a Gaussian white noise. In that case the points of
the configuration space are the pairs �x ,��. We denote by
�p ,
� canonically conjugate variables to �x ,�� in the phase
space

�xi,pj� = � j
i, ��i,
 j� = � j

i . �61�

From the representation �31� it is not difficult to see that this
stochastic system is described by the Hamiltonian

Ĥ =
�
̂i − Âi�2

2
+ �̂ip̂i + Â0, �62�

where A��t ,x ,�� are the gauge fields. The Hamiltonian �62�
is merely a general expression �47� at most quadratic in mo-
menta 
i and linear in momenta pi. By introducing the phase
S�t ,x ,�� the Schrödinger equations corresponding to the
Hamiltonian �62� can be cast into the form

�t� = − ��
i�−

�

2
�i
�� + ��i

�S − Ai�� − �x
i ��i�� ,

�tS − A0 +
��i
�S − Ai�2

2
+ �i�i

xS = −
�

2
��

i ��i
�S − Ai� . �63�

The first equation is the Klein-Kramers equation, while the
second equation is an analog of the Hamilton-Jacobi equa-
tion or, from a utilitarian viewpoint, is the definition of A0.
These equations are Lagrangian with the Hamiltonian action
of the form �41�. Besides, they are invariant with respect to
the gauge transformations

S�t,x,�� → S�t,x,�� + ��t,x,�� ,

Ai�t,x,�� → Ai�t,x,�� + �i
���t,x,�� ,

A0�t,x,�� → A0�t,x,�� + �̇�t,x,�� + �i�i
x��t,x,�� . �64�

The covariant derivatives respecting these gauge transforma-
tions read as follows:

P̂0 = p̂0 + �ip̂i − A0, P̂i = 
̂i − Ai. �65�

As far as an interpretation of the gauge fields Ai is concerned
imposing the unitary gauge S=0 we see that these fields are

equal to the components of the systematic force f i with an
opposite sign. A path-integral representation of the transition
probability �31� reads as

G�t�,x�;t,x� =� �
���t,t��

�ddx���dd����� �
���t,t��

ddp���dd
���
�2
��2d

�exp�−
i

�
�

t

t�−d�

d��piẋ
i + 
i�̇

i

+ i�−

2

2
+ i
i��i

�S − Ai� + ipi�
i	� . �66�

For the Hamiltonians at most quadratic in variables, i.e., for
the linear systematic force f i �48�, an evolution of the sto-
chastic system can be easily found from the Heisenberg
equations. Here we consider the simplest case,

f i = − ��i, �67�

just to illustrate how the formalism works. For the force �67�
we can choose

S = − �
�2

2
, Ai = 0 ⇒ A0 = �2�

2

2
−
�

2
�d , �68�

whence in the Heisenberg representation it follows from the
definition of the phase S that

���
̂i�0� = − �����̂i�0�, ���p̂i�0� = 0. �69�

A general solution of the Heisenberg equations looks like

p̂�t� = p̂ ,

x̂�t� = x̂ + �−2�p̂t − 
̂� − �−1��̂ − �−2p̂�sinh �t + �−2
̂ cosh �t ,


̂�t� = 
̂ cosh �t + ���̂ − �−1p̂�sinh �t ,

�̂�t� = �−2p̂ + ��̂ − �−2p̂�cosh �t + �−1
̂ sinh �t , �70�

where all the operators at the right-hand side �RHS� of these
equations are taken at t=0. Making use of Eqs. �69� and �70�
and the commutation relations one can obtain an evolution of
the average of any observable. For instance,

m

2
��2�t�� =

m�

4�
d + �m

2
��2� −

m�

4�
d	e−2�t. �71�

Then assuming that ��0 and the equipartition law is ful-
filled we determine the deformation parameter in Eqs. �63�,

� =
2�kT

m
. �72�

It is interesting to note that the trace of the equipartition law
in the Fokker-Planck equation �42� with the Hamiltonian
�35� is the relation

lim
dt→0

T�mẋ̂2�t�
2

dt� =
m

2�FP
†x̂i,�x̂i,Ĥ�‡ =

�FP

2
d , �73�

where x̂�t� are the position operators in the Heisenberg rep-
resentation, T means the chronological ordering, and �FP is
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the deformation parameter in the Fokker-Planck equation. To
reproduce the equipartition law one should formally put
dt=2�−1.

B. Relativistic particle

In this subsection we consider three relativistic models
which under stochastic deformation give rise to relativistic
generalizations of the Fokker-Planck and Klein-Kramers
equations, and to the equation describing a massive charged
particle influenced by external systematic and stochastic
forces with the radiation reaction taken into account. In other
words, in the last case a dissipation is described by the
Lorentz-Dirac force �49,50�.

1. Relativistic Fokker-Planck equation

In the previous subsection we saw that the stochastically
deformed model of a nonrelativistic particle results in the
Fokker-Planck equation. Therefore it is reasonable to expect
that stochastic deformation of the model of a relativistic par-
ticle gives some relativistic generalization of the Fokker-
Planck equation.

The Hamiltonian action of an interacting relativistic par-
ticle has the form

SH�x,p,�� =� d��p�ẋ� +
�

2
�P2 − m2� , �74�

where P� : = p�−A� and A� are the gauge fields. The dynam-
ics of the model �74� are governed by one first class con-
straint. In the proper time parametrization �=m−1 the evolu-
tion of the position of the particle obeys the equation

mẋ� = A� − p�. �75�

Thus by analogy with a nonrelativistic model one should
expect that the corresponding stochastic equations look in
the unitary gauge like

mẋ� = A� + ¯ , �76�

where dots denote terms vanishing at �=0, i.e., in the clas-
sical limit A� plays the role of the four-momentum of the
particle. The problem that one encounters by naive introduc-
tion of the noise in the RHS of Eq. �76� is to preserve the
reparametrization invariance. In the proper time gauge, for
example, we must guarantee the fulfillment of ẋ2=1. The
stochastic deformation procedure allows us to obtain the
Fokker-Planck type equation associated with Eq. �76� re-
specting the gauge invariance.

We shall deform the model �74� in the gauge of a labora-
tory time

� = x0. �77�

A thorough description of quantization of a relativistic par-
ticle in the gauge �77� is presented in �51� and we just trace
some basic steps of this procedure which are necessary for
us. First, we solve the mass-shell constraint with respect to
the energy �52�

P0 − �m2 + �Pi�2 = 0. �78�

Then we naturally realize the Heisenberg-Weyl algebra of
operators in the linear space V of two-component real
vectors,

� = ����x�
��x�  � V, x̂�: = �x� 0

0 x�
 ,

p̂�: = �− ��� 0

0 − ���
 . �79�

Define the dual linear space V� as the space of real linear
functionals acting on elements of V by the rule

�����: = −� dx�+�0 1

1 0
� = −� dx���� + ���� ,

�80�

where

� = ����x�
��x�  . �81�

The pure states are as usual the projectors of the form �23�
�53�.

The above construction allows us to realize the constraint
�78� without going to pseudodifferential operators:

T̂: = P̂0 − �0 m2 + �Ai + ��i�2

1 0
 . �82�

The dynamics of a pure state of the stochastic system are
governed in the gauge �77� by the two Schrödinger equations

T̂��� = ���T̂ = 0. �83�

In quantum mechanics they are simply the Klein-Gordon
equation in the first order formalism �54�. In our case these
equations are equivalent to

�P̂2 − m2�� = 0, �� = P̂0�, �P̂+2 − m2�� = 0, �� = P̂0
+� ,

�84�

where the cross denotes a formal conjugation. When the
gauge fields vanish these equations are the Klein-Gordon
equations for tachyons �55�. On the solutions of the
Schrödinger equations �83� the inner product �80� reduces to

����� = −� dx��P̂0� + �P̂0
+�� . �85�

The probability density function corresponding to the state
������ is proportional to the integrand of Eq. �85�.

The Heisenberg equations associated with the
Schrödinger equations �83� allow us to obtain the evolution
of an average of any physical observable and, in particular,
to establish a stochastic interpretation of the gauge fields A�.
However, we shall act in a different way to derive a direct
stochastic interpretation of Eqs. �84� in terms of the Lange-
vin equation of the form �32�. To this aim we first represent
the fields ��x� and ��x� as
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��x� = e1/�S�x�, ��x� = �̃�x�e−1/�S�x�, �86�

substitute them into Eqs. �84�, and fix the unitary gauge
S=0. Then we have �56�

����
2

���̃ + A��̃ = 0, A2 − m2 = ���A�. �87�

The first equation is the conservation law of the probability
density current

j� =
1

m
�A� +

�

2
��	�̃ , �88�

while the second equation is the deformed mass-shell condi-
tion or the mere definition of A0�x�. For given Ai�x� we take
the solution of the second equation in Eq. �87� which is
regular in � and possesses the following classical limit:

�A0��=0 = �m2 + �Ai�2. �89�

The solution defined in this way is unique. Consequently, if
one has j��x� at the initial moment then one can find from
Eqs. �88� the function �̃�x� and its first derivative with re-
spect to time at this initial moment and solve the Cauchy
problem.

For the potential and stationary relativistic flow with a
constant specific relativistic enthalpy �37� entraining the
Brownian particle we can choose Ai=�iU�x�, where U is a
Lorentz scalar. Then the stationary probability distribution
function following from Eq. �88� looks like

j0 = �1 + �Ai�2/m2 exp�− 2U/��/Z = � exp�− 2U/��/Z ,

Z = const, �90�

where � is the Lorentz factor. The power of the � factor is
uniquely specified by the requirement that j0 is the zeroth
component of the four-vector.

It is easy to see from Eq. �88� that the derived Eqs. �84�
lead to negative probabilities when the probability density
function changes rapidly on the spatial �time� scales less than
or comparable with the “Compton wave length” �m−1. This
is in a perfect analogy with the well-known property of the
Klein-Gordon equation in relativistic quantum mechanics
�57�. Therefore Eqs. �84� have a correct stochastic interpre-
tation only for the fields with a characteristic scale of varia-
tions much larger than �m−1.

Despite the above remark we consider an evolution of the
probability density function localized in one point xi=yi at
the initial moment x0=y0:

j0�y0,xi� = �d−1�xi − yi� . �91�

The solution of the Cauchy problem to the first equation in
Eq. �87� is obtained via a convolution of the retarded Green
function with the initial distribution

�1 +
1

2
ap̂0	�d�x − y� , �92�

where the function a�x� is the regular in � solution of the
equation

�A0 +
�

2
�0	a�x� = 1. �93�

Thus, formally, the transition probability is

G�x,y� = �A0 −
1

2
p̂0	 1

1
2 p̂2 − p̂�A�

�1 +
1

2
ap̂0	�d�x − y� .

�94�

The transition probability �94� does not possess the defining
property of the Markov process and it cannot be straightfor-
wardly represented by a path integral. To overcome this dif-
ficulty we represent the transition probability �94� as the sum
of the transition probabilities possessing the Markov prop-
erty with respect to some new variable �fictitious time�. The
stated procedure is an analog of what is called in relativistic
quantum mechanics the Fock’s fifth parameter �proper time�
formalism �58,59�.

Under some technical assumptions on the transition prob-

ability �94� the following equality for the operator Ĝ with the
kernel �94� holds:

Ĝ = �−1�
0

�

d�e−�/�Ĥ,

Ĥ: = �1 +
1

2
ap̂0	−1�1

2
p̂2 − p̂�A�	�A0 −

1

2
p̂0	−1

. �95�

This formula is understood in the distributional sense. It is
derived by an application of the descent method �see, e.g.,
�21,22�� to the equation

− ������,x� = Ĥ���,x�, ��0,x� = �d�x − y� , �96�

and is valid when the integral �95� converges. It is not diffi-
cult to prove the convergence of this integral in the case of
the constant fields Ai�x�. In a general case the integral �95�
can be defined at least perturbatively.

The evolution operator exp�−�−1�Ĥ� respects the Markov
property and conserves the probability density function nor-
malization. Its kernel in the x representation can be inter-
preted as the probability of particle’s arrival to the point x of
the space-time from the point y with the value of the ficti-
tious time �. The sum over all such particles with different
fictitious times gives the total observable transition probabil-
ity �94�.

Now we represent the kernel of the evolution operator

exp�−�−1�Ĥ� by a path integral along lines expounded in
Sec. II and introduce the corresponding Langevin equation
�32�. It seems impossible to find an explicit simple expres-
sion for the probability density function of noise for arbitrary
fields Ai�x� but some properties of this distribution are easily
derived.

First, in the classical limit �→0 the Hamiltonian �95�
reduces to

Ĥ = − p̂�A�/A0, �97�

where A0 is specified by Eq. �89�. Consequently, the prob-
ability density function of noise reads
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F��,�,x� →
�→0

���0 − 1��d−1��i − Ai/�m2 + �Ai�2� . �98�

We see that in the classical limit the fictitious time turns into
the physical time x0 of the laboratory frame. Besides, the
above formula gives the interpretation to the fields Ai�x�,
which confirms our expectations.

Second, in the nonrelativistic limit A0�m and m−1�p̂0�
�1, where p̂0 is assumed to act on the probability density
function, the Hamiltonian �95�is rewritten as

Ĥ = −
�p̂i�2

2m
−

p̂�A�

m
, �99�

whence the standard Gaussian distribution for the noise fol-
lows. As in the classical limit the fictitious time � is the
physical time x0.

Thus Eqs. �84� generalize the Fokker-Planck equation
�42� in the same sense as the Klein-Gordon equation gener-
alizes the Schrödinger equation. In the classical limit these
equations describe the same physical system and in the non-
relativistic limit Eqs. �84� reduce to the Fokker-Planck equa-
tion �42�. However, it is worthwhile to note that the above
interpretation in terms of the fictitious time has some weak-
nesses. Namely, since we start from the probability density
function �91� localized in one point the obtained equations
are ill-defined. This inevitably leads to negative probabilities
although they disappear in the classical and nonrelativistic
limits, when �m−1 tends to zero. Moreover, the negative
probabilities appear to result in the probability density func-
tion of the noise acting on the particle arrived to the point x
with the fictitious time � being not equal to zero in the su-
perluminal region. But, of course, the sum over all the par-
ticles with different � gives rise to the transition probability
with the support bounded by the light cone. A detailed inves-
tigation of these peculiarities will be given elsewhere.

2. Relativistic Klein-Kramers equation

To formulate a relativistic generalization of the Klein-
Kramers equation we start from a classical relativistic system
with the Hamiltonian action of the form �cf. Eq. �62��

SH�x,p,y,
,�,�� =� d��p�ẋ� + 
�ẏ� − �T1 − �T2� ,

T1: =
1

2
g���
� + A���
� + A�� + y�p� + �, T2: = y2 − m2,

�100�

where dots denote the derivatives with respect to the param-
eter �, m is a mass of the particle, A��x ,y� and ��x ,y� are
gauge fields, g���x ,y� is a symmetric Lorentz tensor or-
thogonal to y�. In other words the dynamics of the system
are governed by two first class constraints. The first con-
straint generates reparametrizations of the world line of the
particle, the second constraint being just the mass-shell con-
dition. These two constraints are in the Abelian involution by
virtue of the property of the tensor g��.

A part of the equations of motion in what we are inter-
ested in reads as follows:

ẋ� = �y�, ẏ� = �g���A� + 
��, y2 = m2. �101�

By analogy with a nonrelativistic case we expect that in the
classical limit �→0 and in the unitary gauge S=0 the sto-
chastically deformed system �100� will describe a relativistic
particle with the equations of motion

ẏ� = m−1g���x,y�A��x,y��ẋ2, m
ẋ�

�ẋ2
= y�. �102�

Hence in the unitary gauge and in the classical limit
m−1g��A� is expected to be a systematic force acting on the
particle. As in the previously considered model a naive in-
troduction of the noise to the RHS of the first equation in Eq.
�102� spoils the reparametrization invariance. To preserve it
we have to demand from the noise correlators

y������������1
��1� ¯ ��n

��n�� = 0, �103�

where ����� is the noise. The identities �103� can be viewed
as the Ward-Takahashi identities for this model �see a de-
tailed discussion in �60,61��. By the use of the stochastic
deformation procedure we shall find below the general form
of the Fokker-Planck equation associated with Eq. �102� re-
specting the reparametrization invariance in the case of the
Gaussian white noise. A generalization of the obtained equa-
tion to the case of an arbitrary noise distribution law will be
obvious.

To deform the model �100� we naturally realize the
Heisenberg-Weyl algebra in the linear space V of smooth
functions ��x ,y�:

x̂� = x�, p̂� = − ���
x , ŷ� = y�, 
̂� = − ���

y . �104�

Then the constraints �100� are the Weyl-ordered operators

T̂1 =
1

8
��̂��̂�g

�� + 2�̂�g���̂� + g���̂��̂�� + y�p̂� + � ,

T̂2 = y2 − m2, �105�

where �̂�= 
̂�+A�. These constraints are in the Abelian in-
volution as well �62�. The physical pure states of the system
are singled out by the conditions

y0
−1T̂1��� = ���y0

−1T̂1 = 0, T̂2��� = ���T̂2 = 0, �106�

where the inner product is defined in a standard way and we
resolve the first constraint with respect to p̂0. Equations �106�
are invariant under the gauge transformations

�→ e�/��, �→ e−�/�� ,

A� → A� − ��
y �, �→ � − y���

x � . �107�

Besides the transformation of the gauge fields A� of the form

A��x,y� → A��x,y� + y���x,y� , �108�

leaves Eqs. �106� unchanged. Therefore the fields A� have
d−1 independent components and in the massive case one
can make them orthogonal to y�. Introducing the phase
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��x,y� = e1/�S�x,y�, ��x,y� = y0�̃�x,y�e−1/�S�x,y�, �109�

we reduce the first pair of equations �the Schrödinger equa-
tions� in formula �106� to the system

��
y��

2
g����

y�̃ − g�����
yS + A���̃ − ��

x �y��̃� = 0,

1

2
g�����

y S + A�����
yS + A�� + y���

x S + �

= −
�

2
��

y �g�����
yS + A��� −

�2

8
���

y g��. �110�

The first equation is the conservation law of the probability
density current whose time component is the probability den-
sity function. The second equation is the definition of �.

The second pair of equations in Eq. �106� is taken into
account by the equalities

�̃ = ��y2 − m2��̄�x,yi�, S = ln ��y2 − m2� + S̄�x,yi� .

�111�

On substituting these equalities to the first equation in Eq.
�110� we obtain a relativistic generalization of the Klein-
Kramers equation �23–28,63,64�

�i
y�gij

y0 ��2 � j
y�̄ − �� j

yS̄ + Aj��̄	 − ��
x ��̄y�

y0 	 = 0, �112�

where the positive root of the mass-shell condition is chosen:
y0=�m2+ �yi�2. The logarithm of the � function in Eq. �111�
does not actually contribute to Eqs. �112� because of the
orthogonality of the tensor g�� to y�. Now it is not difficult
to construct a path-integral representation of the transition
probability and the corresponding Langevin equations �32�.
For brevity we give the Langevin equations only,

ẋ� =
y�

y0 , ẏi =
gij

y0 �� j
yS̄ + Aj� +

�

2
� j

y�gij

y0 	 + �i,

��i���� = 0, ��i���� j����� = �
gij

y0 ��� − ��� , �113�

where �i is a Gaussian white noise and we assume that
gij�x ,y� is positively definite. Recall that the stochastic equa-
tions �113� are understood in the Ito sense. Thus we confirm
our expectations that Eqs. �112� and �113� describe a relativ-
istic particle in the gauge of a laboratory time �77� under the
influence of noise.

As far as the tensor g�� is concerned its physical meaning
is comprehended from the Langevin equations �113�. We re-
mark only two possible choices:

g1
�� =

y�y�

y2 − ���,

g2
�� = − ���� −

n�y�
ny

	���� −
y�n�

n�y
�	, n2 = 1. �114�

The first tensor implies that the effect of the stochastic force
on a relativistic particle is isotropic in a momentary comov-

ing frame. The second tensor corresponds to the isotropic
influence of the stochastic force in the frame distinguished
by the vector n�. It is interesting to note that in the first case,
which is minimal from the mathematical point of view since
new objects are not introduced, the tensor g1

ij can be inter-
preted as the inverse metric in the momentum space with the
coordinates yi. Keeping in mind that

�det g1
ij�1/2 = m−1y0, �115�

we can rewrite Eq. �112� in a covariant way. The metric gij
1 is

a metric of a constant positive curvature and, consequently, it
is conformally flat. The second tensor g2

ij becomes Euclidean
provided that n�=�0

�.
To conclude this example we briefly discuss a representa-

tion of the transition probability in terms of the proper time.
The main observation allowing us to formulate Eqs. �113� in
the proper time gauge is the following. The retarded Green
function of the twisted forward Schrödinger equation �106�,
that is, the transition probability, is the kernel of

−
1

�y0
−1T̂1�

−1
= − y0 1

�̃T̂1�̃
−1

= �
0

�

d�
y0

�m
e�/�m�̃T̂1�̃

−1
,

�116�

where �̃ : =y0
−1� and the last equality is proved by the de-

scent method as was done in considering a relativistic gen-
eralization of the Fokker-Planck equation. The operator in
the exponent is proportional to the operator acting on �̃ in the
first equation in formula �110�.

The kernel

�x,y�exp� �

�m
�̃T̂1�̃

−1�x�,y�� �117�

is the probability density of particle’s arrival to the point
�x ,y� from the point �x� ,y�� with the proper time � measured
in the momentary comoving frame. The factor y0m−1 in Eq.
�116� is caused by the passage from the momentary comov-
ing frame to the laboratory frame. The transition probability
possesses the Markov property with respect to the proper
time �. It conserves the normalization of the probability den-
sity function, i.e., the probability to find a particle with the
proper time � in some point of the space-time with a certain
momentum is equal to unity. Since the generator of evolution

commutes with the operator T̂2 the transition probability
�117� respects the mass-shell condition.

The Langevin equations associated with Eq. �117� read as

mẋ� = y�, ẏ� = m−1g�����
yS + A�� + �m−1��

yg��/2 + ��,

������� = 0, ������������� = �m−1g����� − ��� ,

�118�

whence we infer that � is indeed the proper time. As before
the noise �� is a Gaussian white noise. The representation
�116� of the transition probability is especially useful when a
relativistic particle has a finite lifetime. In that case the inte-
gral �116� over � is cut on the upper limit by the lifetime of
the particle provided, of course, that the particle was created
at the initial moment.
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3. Stochastic Lorentz-Dirac equation

A relativistic generalization of the Klein-Kramers equa-
tion regarded in the preceding example does not apply to a
charged particle with a radiation reaction taken into account.
If we apply the above scheme to the so-called Landau-
Lifshitz equation �65�, which is obtained from the Lorentz-
Dirac equation by the reduction of order procedure, then the
vanishing external systematic force entails a zero dissipation
force in the resulting stochastic equation. That is why we
should stochastically deform the Lorentz-Dirac equation it-
self. The procedure of stochastic deformation is very similar
to what we have considered in the previous example. There-
fore we mention the crucial points only.

We start from the Hamiltonian action of the form

SH�x, x̄,y, ȳ,w,w̄,�,�,�� =� d��x̄�ẋ� + ȳ�ẏ� + w̄�ẇ�

− �T1 − �T2 − �T3� ,

T1: =
1

2
g��W̄�W̄� − w2y�W̄� + w�ȳ� + y�x̄� + � ,

T2: = y2 − 1, T3: = yw , �119�

where W̄� : = w̄�+A� is a covariant momentum, A��x ,y ,w�
and ��x ,y ,w� are gauge fields, and g���x ,y ,w� is a symmet-
ric Lorentz tensor orthogonal to y�. For simplicity we as-
sume that the particle has a unit mass. The constraints T1, T2,
and T3 are of the first class with the algebra

�T1,T2� = − 2T3, �T1,T3� = w2T2. �120�

A relevant part of the equations of motion resulting from the
action �119� reads as

ẋ� = �y�, ẏ� = �w�, ẇ� = ��g��W̄� − w2y�� ,

y2 = 1, yw = 0. �121�

These equations suggest that in the classical limit and in the
unitary gauge the stochastically deformed model �119� de-
scribes a relativistic particle obeying the equations of motion

x�� + ẍ2ẋ� = g��A�, ẋ� = y�, ẏ� = w�, �122�

where the derivatives are taken with respect to the proper
time. The LHS of the first equation is proportional to the
Lorentz-Dirac force and we refer to this equation as the
Lorentz-Dirac equation. The mass term is contained in the
RHS of this equation.

The Heisenberg-Weyl algebra is naturally realized in the
linear space V of smooth functions ��x ,y ,w�:

x̂� = x�, x̂̄� = − ���
x , ŷ� = y�, ŷ̄� = − ���

y ,

ŵ� = w�, ŵ̄� = − ���
w. �123�

The constraints turn into the appropriate Weyl-ordered opera-
tors. Their algebra coincides with the classical algebra of
constraints �120�. The physical states of the stochastic sys-
tem are specified by

y0
−1T̂1��� = ���y0

−1T̂1 = 0,

T̂2��� = ���T̂2 = 0, T̂3��� = ���T̂3 = 0, �124�

where the standard inner product is understood. The first pair
of equations in formula �124� is just the forward and back-
ward Schrödinger equations.

Making a substitution of the form �109� into the first
equation in Eq. �124� we arrive at �66�

��
w��

2
g����

w�̃ − �g�����
wS + A�� − w2y���̃	

− ��
y �w��̃� − ��

x �y��̃� = 0,

1

2
g�����

wS + A�����
wS + A�� − w2y���

wS + w���
y S + y���

x S

− yw + � = −
�

2
��

w�g�����
wS + A��� −

�2

8
���

w g��. �125�

As usual the first equation is the conservation law of the
probability density current. The probability density function
is the time component of this current. The rest of the equa-
tions defining the physical state results in

�̃ = ��y2 − 1���yw��̄�x,yi,wi� ,

S = ln���y2 − 1���yw�� + S̄�x,yi,wi� . �126�

Under the above conditions the first equation in Eq. �125�
can be reduced after a little algebra to

�i
w���

2
gij� j

w − �gij�� j
wS̄ + Aj� − w2yi�	 �̄

y0
2

− �i
y�wi �̄

y0
2	 − ��

x �y�
�̄

y0
2	 = 0, �127�

where we have assigned y0=�1+ �yi�2 and w0=y0
−1yiwi. Re-

call that the probability density function is y0
−1�̄. Now a path-

integral representation of the transition probability associated
with Eq. �127� is straightforward. The Langevin equations
�32� with the Ito prescription become

ẋ� =
y�

y0 , ẏi =
wi

y0 ,

ẇi =
gij

y0 �� j
wS̄ + Aj� − w2 yi

y0 +
�

2
� j

w�gij

y0 	 + �i,

��i���� = 0, ��i���� j����� = �
gij

y0 ��� − ��� , �128�

where �i is a Gaussian white noise and gij�x ,y ,w� is posi-
tively definite. As regards explicit forms of the tensor gij, see
the discussion in the previous example �67�. The obtained
stochastic equations are equivalent to the Lorentz-Dirac Eq.
�122� with a random force which is rewritten in the gauge of
a laboratory time, that is, Eq. �128� is the stochastic Lorentz-
Dirac equation.
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The proper time representation of the transition probabil-
ity from the point �x� ,y� ,w�� to the point �x ,y ,w� takes the
form

�x,y,w��
0

�

d��−1y0 exp� �
�
�̃T̂1�̃

−1�x�,y�,w�� , �129�

where �̃ : =y0
−1� and �̃T̂1�̃

−1 is the operator acting on �̃ in the
first equation of Eq. �125�. Besides, the initial state should
satisfy the mass-shell condition and its differential conse-
quence. Therefore the proper time stochastic Lorentz-Dirac
equation is the following:

ẋ� = y�, ẏ� = w�,

ẇ� = g�����
wS + A�� − w2y� +

�

2
��

wg�� + ��,

������� = 0, ������������� = �g����� − ��� , �130�

where �� is a Gaussian white noise.

C. Free relativistic field models

In this subsection we consider the stochastic deformation
of two free models: a relativistic real scalar field and an
electromagnetic field. We regard the scalar field model as a
prototype of any field model. Besides, it is the simplest
model of a one-dimensional crystal in the continuum limit,
where the scalar field describes the displacements of points
of a medium from their equilibrium positions. The stochas-
tically deformed model of Maxwell’s fields allows us to
touch the problem of electromagnetic fluctuations �29� bring-
ing it in accordance with the general scheme advocated in
this paper.

1. Scalar field

Consider a real scalar field ��x� on the Minkowski space
R1,d−1 with the dynamics governed by the action

S��� =
1

2
� ddx������� − m2�2� , �131�

where m is a mass. The corresponding Hamiltonian action
has the form

SH��,
� =� ddx�
�̇ −
1

2
�
2 + �i��i� + m2�2� ,

�132�

where the dot denotes the derivative with respect to time.
The Hamilton equations are

�̇ = 
, 
̇ = �� − m2� . �133�

The Noether theorem gives the conserved four-momentum

P0 
 H =
1

2
� dx�
2 + �i��i� + m2�2�, Pi =� dx
�i� ,

�134�

which is the generator of translations.

Now we are going to define the stochastic deformation.
The canonical coordinates ��x� and canonical momenta 
�x�
turn into the generators of the Heisenberg-Weyl algebra,

��̂�x�,
̂�y�� = ���x − y� . �135�

Since we deform the linear model its Heisenberg equations
coincide with the Hamilton equations. The Heisenberg equa-
tions can be formally solved by means of the expansion in
terms of the complete set of solutions of the classical equa-
tions of motion in the form of plane waves. The field opera-
tor and its canonical conjugate read as

�̂�x� =� dp

�2
�d−1

1
�p0

�â�p�cos�p�x�� + b̂�p�sin�p�x��� ,


̂�x� =� dp

�2
�d−1
�p0�b̂�p�cos�p�x�� − â�p�sin�p�x��� ,

�136�

where p0 : =�m2+p2. As it follows from Eq. �135� the opera-

tors â�p� and b̂�p� obey the commutation relations

�â�p�, b̂�k�� = ��2
�d−1��p − k� . �137�

The Weyl-ordered operators of the generators of translations
�134� look like

P̂� =� dp

�2
�d−1

p�
2

�â2�p� + b̂2�p�� . �138�

The solution �136� also implies that

��̂�x�,�̂�y�� = �� dp sin�p��y − x���
�2
�d−1p0

= − 2� sgn�x0 − y0�Ḡ�x − y� , �139�

where Ḡ�x−y� is the symmetric Green function �see, e.g.,
�68��,

�� + m2�Ḡ�x� = �d�x�, Ḡ�x − y� = Ḡ�y − x� . �140�

As in the case of quantum field theory two field operators
separated by a spacelike interval commute.

The key ingredient of stochastic field theory is the propa-
gator, which we define in a standard way,

G�x,y�: = �T��̂�x��̂�y��� , �141�

where T is a chronological ordering. Any other correlator can
be expressed in terms of the propagator by means of the
Wick theorem and the commutation relation �139�.

Certainly, an explicit form of the propagator depends on
the state entering in its definition. Nevertheless, the propaga-
tor possesses the properties following from the rule of differ-
entiation of the chronological ordering and the Heisenberg
equation,
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��x + m2�G�x,y� = − ��d�x − y�, G�x,y� = G�y,x� ,

�142�

regardless of the state which does not depend on time explic-
itly. Therefore the propagator can be represented as

G�x,y� = − �Ḡ�x − y� + ¯ , �143�

where dots denote some solution of the Klein-Gordon equa-
tion.

Moreover, if the state �̂ is translation invariant,

��̂,P̂�� = 0, �144�

then the obvious identity

Tr��P̂�, �̂T��̂�x��̂�y���� = 0 �145�

entails a translational invariance of the propagator, viz.

G�x,y� = G�x − y� . �146�

Analogously it can be proved that an invariance of the state
with respect to the Lorentz transformations results in a de-
pendence of the propagator on the space-time interval only.

Unlike quantum field theory there is no distinguished
ground state in our case since the Hamiltonian �138� has an
unbounded spectrum. That is why we define the state �̂ in
such a way that the propagator �141� becomes minimal in
view of the above considerations, that is, the dotted terms in
formula �143� vanish.

Let us achieve this goal gradually. First, suppose that �̂
commutes with the Hamiltonian, i.e., the state is invariant
with respect to translations in time. Then from the equality

��â�p�b̂�k�,Ĥ�� = p0�b̂�p�b̂�k�� − k0�â�p�â�k�� = 0,

�147�

and the same equality with p and k interchanged we find

�â�p�â�k�� = �b̂�p�b̂�k�� = f�p,k���p0 − k0� ,

f�p,k� = f�k,p� . �148�

Furthermore, from the equalities

��â�p�â�k�,Ĥ�� =
1

2
�k0�â�p�b̂�k� + b̂�k�â�p��

+ p0�â�k�b̂�p� + b̂�p�â�k���

= 0,

��b̂�p�b̂�k�,Ĥ�� = −
1

2
�k0�b̂�p�â�k� + â�k�b̂�p��

+ p0�b̂�k�â�p� + â�p�b̂�k���

= 0, �149�

we infer that

1

2
�â�p�b̂�k� + b̂�k�â�p�� = g�p,k���p0 − k0� ,

g�p,k� = − g�k,p� . �150�

By the same way if we assume that the state �̂ is also invari-
ant with respect to the spatial translations then

�â�p�â�k�� = �b̂�p�b̂�k�� = f�p���p − k� ,

1

2
�â�p�b̂�k� + b̂�k�â�p�� = 0. �151�

Thus we have for the dotted terms in formula �143�

� dp

�2
�2d−2

f�p�
p0

cos�p��x − y��� , �152�

where one should bear in mind that the propagator expressed

in terms of the operators â and b̂ looks like

G�x,y� =� dpdk

�2
�2d−2�p0k0

��â�p�cos�p�x�� + b̂�p�sin�p�x���

��â�k�cos�k�y�� + b̂�k�sin�k�y���� , �153�

provided x0�y0. The additional requirement of an invariance
of the state with respect to the Lorentz group yields that the
function f�p� contributes to the integral �152� as a constant.
Consequently, this integral is proportional to the so-called
Hadamard function �68�,

G�1��x − y�: =� dp cos�p��x − y���
�2
�d−1p0

. �154�

The Hadamard function does not vanish for the points x and
y separated by a spatial interval. Hence if we want to obtain
a causal theory we have to set the proportionality constant to
zero that leaves us with the propagator proportional to the
symmetric Green function.

The above considerations prove that the propagator pro-
portional to the symmetric Green function is unique for the
stochastically deformed model �131� under the causality con-
dition and the requirement of the Poincaré invariance of the
state. Explicitly such a pure state �̂= ������ can be specified
as

������ = �
p

��p���p� , �155�

where

�â2�p� + b̂2�p����p� = ��p��â2�p� + b̂2�p�� = 0. �156�

In particular this implies

P̂���� = ���P̂� = 0. �157�

The propagator �141� naturally appears when one com-
putes, for example, the transition probability from the state
��1���1� to the state ��2���2�,

��2�Û��1���1�Û−1��2� , �158�

where Û is the evolution operator over an infinite time and
the states ��1���1� and ��2���2� are obtained from the
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ground state �155� by the action of the operators â and b̂. The
perturbation techniques is in a perfect analogy with such a
procedure in quantum field theory. In our case the so-called
closed-time-path formalism �see, e.g., �60,69� and references
therein� seems to be especially useful for calculations. If the
classical current is introduced into the model �131� then the
solution �136� of the Heisenberg equations is the general
solution of the homogeneous equation only. A particular so-
lution of the inhomogeneous equation with current is given
by a convolution of the retarded Green function with this
classical current. In that case it is the convolution of the
retarded Green function with current that is the average field
over the ground state �155�.

2. Electromagnetic field

As usual we start from the classical Maxwell action �70�

S�A� = −
1

4
� d4xF��F

��

=
1

2
� d4x�Ȧi

2 − 2�iA0Ȧi + ��iA0�2 − ��iAj�2 + �iAj� jAi� ,

�159�

where F=dA is the strength tensor of the electromagnetic

field. Making the Legendre transformations on Ȧi only and
introducing the canonical momenta


i =
�L

�Ȧi
= �iA0 − Ȧi, �160�

we arrive at the Hamiltonian action

SH =� d4x�
iȦ
i −

1

2
�
i

2 + ��iAj�2 − �iAj� jAi� + A0�i

i	 .

�161�

As we see the time component of the gauge fields A� is
merely the Lagrange multiplier to the Gauss law constraint.
The expression in square brackets with 1/2 is the density of
the physical Hamilton function H0. Thus we have a model
with first class constraints.

According to the standard Batalin-Fradkin-Vilkovisky
quantization scheme for the first class constrained models we
introduce the canonically conjugate ghost pairs �c , P� and

�c̄ , P̄�,

�ĉ�x�, P̂�y�� = �ĉ̄�x�, P̄ˆ �y�� = ���x − y� ,

gh c = gh c̄ = − gh P = − gh P̄ = 1, �162�

where square brackets denote graded commutators. Besides
we introduce the canonical momentum 
0, gh 
0=0, to the
Lagrange multiplier A0. Then we construct the BRST charge

�̂ =� dx�ĉ�i
̂i + ĉ̄
̂0�, ��̂,�̂� = 2�̂2 = 0, gh �̂ = 1.

�163�

Physical observables and the Hamiltonian should commute

with the BRST charge. In our case the Hamiltonian Ĥ0 ob-
viously satisfies this requirement. The gauge fixing fermion
is taken in the form

�̂ =� dx�P̂Â0 + P̄
ˆ ��iÂi −

 

2

̂0	, gh �̂ = − 1,

�164�

where  is an arbitrary constant.
Therefore the gauge fixed Hamiltonian looks like

Ĥ: = Ĥ0 + ��̂,�̂�

=� dx�1

2
�
̂i

2 + ��iÂj�2 − �iÂj� jÂi� − Â0�i
̂
i

− 
̂0��iÂ
i +

 

2

̂0	 − ĉ̄P̂ + �iĉ�iP̄

ˆ� , �165�

and commutes with the BRST charge as well. The corre-
sponding Heisenberg equations read as

Â
˙

i = �iÂ0 − 
̂i, Â
˙

0 = �iÂi −  
̂0, ċ̂ = ĉ̄, P̂
˙

= − �P̄
ˆ

,


̇̂i = �i� jÂj − �Âi − �i
̂0, 
̇̂0 = − �i
̂i, ĉ̄
˙

= �ĉ, P̄
ˆ̇

= − P̂ .

�166�

As expected the ghosts dynamics are split of the fields dy-
namics and we do not enlarge on them henceforth. Combin-
ing the Heisenberg equations it is not difficult to obtain

�Â0 = � − 1��i
̂i, � Âi = �1 −  ��i
̂0, � 
̂i = 0.

�167�

In the Feynman gauge  =1 the Heisenberg equations on the
fields reduce to the wave equations and we can use all the
results of the preceding example regarding the model of a
scalar field. The physical states are those containing solely
transverse photons.

Hence in the Feynman gauge the Poincaré-invariant
causal propagator of the fields A� becomes

G�x − y� = �T�Â��x�Â��y��� = ����Ḡ�x − y� ,

�Ḡ�x� = �d�x� , �168�

where Ḡ�x� is the symmetric Green function, what coincides
with the well-known result of �29� in the case of a transpar-
ent medium �=�=1. The correlators of the electromagnetic
fields F�� are straightforwardly obtained from Eq. �168�.

IV. CONCLUDING REMARKS

There are, of course, many important open problems re-
garding the procedure advocated here. We mention a few of
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them only. Apart from the study both analytical and numeri-
cal of solutions of the derived relativistic equations we dis-
tinguish a more detailed investigation of the model with non-
linear phase space. In spite of the fact that we considered
several models of this kind their a priori interpretation re-
mains unclear. For instance, in studying the stochastically
deformed model of a relativistic particle with Hamilton func-
tion quadratic in momenta and with a nonlinear phase space,
we found after constructing a path-integral representation of
the transition probability that the probability distribution
function of the random force is non-Gaussian. It is desirable
to obtain a simple method to discover the noise distribution
from the initial classical model. Furthermore we only
touched the problem of stochastic deformation of field theo-
ries. The next step is to consider interacting models and their
renormalization properties. It is also interesting to investigate
the structure of the gauge transformations and corresponding
functional gauge fields associated with the changing of the
phase S in the stochastic field theory framework. Notice that
the gauged formulation of stochastic mechanics developed in
this paper allows us to represent it in terms of sections of
vector bundles analogously to quantum mechanics. For the

Schrödinger equations of the form �37� the pair of functions
��x� and ��x� describing a pure state of a stochastic system
can be viewed as a section �written in the light cone coordi-
nates� of a vector bundle over the space-time with the typical
fiber R2 and the structure group SO�1,1�. Then the states
should be described by timelike or isotropic sections to guar-
antee the non-negativity of probability density functions. The
gauge fields are connections on this vector bundle. A similar
construction on the Whitney sum of tangent and cotangent
bundles TM � T�M is called an almost generalized product
structure �see, for an introduction, �71�� that is a real analog
of an almost generalized complex structure �72�.
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